

ROLE OF CLIMATE VARIATION ON THE POPULATION DYNAMICS OF SPOTTED-WING DROSOPHILA

Cesar Rodriguez-Saona

Professor and Extension Specialist, P.E. Marucci Center, Chatsworth, NJ

North American Raspberry & Blackberry Association February 27, 2024

A Changing Climate

- The significant variation of average weather conditions becoming, for example, warmer, wetter, or drier—over several decades or longer.
- Many climate change impacts have been felt in recent years, with 2023 the warmest on record.
- Higher temperatures are causing more intense storms, droughts, and other weather extremes.

Temperature change over the past 50 years

A Changing Climate

Increased number of generations

Expansion of geographic range

Outbreak of plant diseases transmitted by insects

Increased overwintering survival

Desynchronization of insects and their natural enemies

Loss of synchrony with the host plant

Skendžić et al. 2021

Biological Invasions

- Annual rate of first insect records worldwide has increased during the last 200 years (Seebens et al. 2017).
- Global economic costs over the last 50 years estimate > US\$1.288 trillion (Zenni et al. 2021).
- Most economically developed regions are highly vulnerable to invasion (Early et al. 2016).

Spotted-Wing Drosophila

SWD, Drosophila suzukii

- Invasive pest from Asia.
- First detected in 2008 in California and in 2011 in the Northeast.
- Many hosts: strawberries, raspberries, cherries, blueberries.
- Females with prominent serrated ovipositor.

Illustration: Marco Rossi-Stacconi, © Oregon State University

Non-Crop Hosts

Illustration: Marco Rossi-Stacconi, © Oregon State University

Distribution Worldwide

Legend: O Present O Transient

EPPO Global Databas

Distribution in the USA

OPTIMUM ACTIVITY:

68 – 86°F (20 – 30°C)

Limited by high temperatures, low humidity

Seasonality

Seasonality

Winter-morph flies survive below freezing temps with acclimation; require food for long term survival.

Infestation risk is related to severity of winter.

Seasonality

Sario at al. Biology 2023

- Only northern highbush blueberries (*Vaccinium corymbosum*) are grown in New Jersey
- \$65 million industry in New Jersey, predominantly in Atlantic & Burlington Counties grown in 9,300 acres
- New Jersey is the sixth largest producer in US
- More than 75% of New Jersey production for fresh market

Native Blueberry Pests

Blueberry Maggot Fly (Rhagoletis mendax)

NATIVE

Historically, the blueberry maggot fly was the driver of insecticide application during harvest.

SWD has supplanted the blueberry maggot as main target of insecticide in New Jersey

Interaction of SWD and the blueberry maggot has not been documented

Question: Do local climate influences population numbers and activity of SWD and blueberry maggot?

- Average weekly captures across 41 highbush blueberry farms in Burlington and Atlantic counties
 - Blueberry maggot: 72 sites
 - SWD: 54 sites
- Deployed around Memorial Day, ~when 'Duke' variety starts to turn blue
- Completed at the end of August
- Compare peak blueberry maggot and average July SWD captures

Trapping Data

Average Trap Captures

Rutgers

First Capture Days

Blueberry maggot peak captures decrease from 2015 to present

SWD mid-season captures increase from 2015 to present

Likely a case of **competitive displacement**

Blueberry maggot first captures

- Prior to 2013: Jun 5 Jun 12
- 2021: Jul 6

SWD first captures

- 2015: Jun 17
- 2022: May 24

Increased number of generations

Insecticide applications do not account for these trends

Blueberry Maggot

Spotted-Wing Drosophila

Seasonal Climate Factors

Climate records of daily:

- Average temperature
- Precipitation
- Dew point
- Vapor pressure deficit

Dr. James Shope Department of Environmental Sciences

Oregon State's PRISM data set

Summarized by season

- Winter (Dec Feb)
- Spring (Mar May)
- Summer (Jun Aug)
- Fall (Sep Nov)

RUTGERS First Capture Dates vs. Climate Factors

Variable	SWD 2015–2022	Blueberry maggot 2005–2022	Blueberry maggot 2005–2013	Blueberry maggot 2015–2022	
Winter Freezing Degree Days	0.85	0.14	-0.31	0.36	
Summer Average Temperature	-0.86	0.04	-0.52	0.36	
Summer Average Dew Point	-0.87	0.29	-0.76	0.62	
Summer Growing Degree Days	-0.86	0.04	-0.52	0.36	
Summer Average Precipitation	-0.04	0.35	-0.28	0.73	

*Bolded numbers indicate significant correlations with $P \le 0.05$.

RUTGERS First Capture Dates vs. Climate Factors

Winter and summer temperatures account for these trends

Blueberry Maggot

Capture Numbers

Not correlated with seasonal conditions

First Captures

- Prior to SWD invasion: Summer dew point
- After SWD invasion: Summer rainfall

Spotted-Wing Drosophila

Capture Numbers

- Not correlated with seasonal conditions

First Captures

Winter freezing temperatures, summer temperatures, summer dew point

Increased overwintering survival

SWD Predictive Model

Based on winter and prior summer conditions

Climate projection data from: NOAA's Applied Climate Information System

- Temperatures, precipitation

<u>Goals</u>

1 – help project annual SWD arrival in New Jersey blueberry fields for IPM usage

 $\mathbf{2}$ – inform how climate change may affect SWD arrival dates over the next 20–30 years

SWD First Capture Model

Linear Model	Coefficient(s)	Intercept	r²	RMSE (days)	AIC
Winter DD ₃₂	0.079	136.636	0.72 (0.69)	6.034	53.2
Summer DD ₅₀	-0.083	342.626	0.74 (0.69)	5.792	52.5
Winter DD ₃₂ + Summer DD ₅₀	0.0378 _{Winter DD32} , -0.0490 _{Summer DD50}	257.043	0.78 (0.69)	5.849	53.2

Preliminary 2024 projection:

Winter – May 22

Summer – June 10

Winter + Summer – June 01

High Greenhouse Gas Emissions

<u>Change from 2020</u> 2030: 3.6 earlier 2050: 9.7 days earlier

2030: 3.9 days earlier 2050: 14.5 days earlier

Takeaways

- 1. SWD is likely out-competing the blueberry maggot for resources
- 2. As SWD population grows and arrives earlier each year, the blueberry maggot population drops and arrives later
- 3. As an invasive, SWD is heavily influenced by seasonal temperatures
 - Summer degree days and winter freezing degree days heavily influence SWD activity
 - No tangible seasonal climate influence on the blueberry maggot
- 4. Simple projection indicates SWD likely to arrive 4 days earlier on average by 2030 and 10-14 days earlier by 2050
- 5. Population and activity of the blueberry maggot are likely to continue to decline

PLOS ONE

RESEARCH ARTICLE

The contrasting role of climate variation on the population dynamics of a native and an invasive insect pest

James Shope^{1*}, Dean Polk², Carrie Mansue³, Cesar Rodriguez-Saona⁴

 Department of Environmental Sciences, New Jersey Climate Change Resource Center, Rutgers University, New Brunswick, New Jersey, United States of America, 2 Rutgers Specialty Crop Research and Extension Center, Rutgers University, Cream Ridge, New Jersey, United States of America, 3 Cooperative Extension of Atlantic County, Rutgers University, Mays Landing, New Jersey, United States of America, 4 P. E. Marucci Center, Rutgers University, Chatsworth, New Jersey, United States of America

Sustainable SWD Management

Sustainable Spotted Wing Drosophila Management for United States Fruit Crops

USDA National Institute for Food and Agriculture (NIFA) Specialty Crops Research Initiative (SCRI) Award number 2015-51181-24252

Four years: 15 Sept 2015 through 14 Sept 2019

TGERS

United States Department of Agriculture National Institute of Food and Agriculture MOVING FROM CRISIS RESPONSE TO LONG-TERM INTEGRATED MANAGEMENT OF SWD: A KEYSTONE PEST OF FRUIT CROPS IN THE UNITED STATES

USDA National Institute of Food and Agriculture, Specialty Crop Research Initiative (SCRI)

Award No. 2020-51181-32140

WASHINGTON STATE USDA

Cornell Universit

Oregon State

Berkeley

SWD NATIONAL IMPACT SURVEY

We are conducting a national survey to better understand the impact of research conducted by land-grant university faculty on spotted wing drosophila (SWD) mitigation across the United States.

To advance research efforts focused on developing more effective and efficient SWD management tools to meet your needs.

UNIVERSITY OF

By scanning the Qrcode or click the link https://ufl.gualtrics.com/jfe/form/SV 9B5kHcjL IRgW9gO

Cornell University

NC STATE UNIVERSITY

UNIVERSITY OF CALIFORNI

MAINE

Berkeley

RUTGERS

I JNIVERSITY

