Andrea Myers¹, Renee Threlfall^{1*}, Yue Chen², and Anthony Gunderman²

¹ Food Science Department, UA System and ² Biomedical Engineering Department, Georgia Institute of Technology/Emory Using Marketability Attributes for the Initial Development of a Soft Robotic Gripper for Harvesting Fresh-market Blackberries

DIVISION OF AGRICULTURE

RESEARCH & EXTENSION

University of Arkansas System

Introduction

Fresh-market Blackberries

- Fresh-market blackberries (*Rubus* subgenus *Rubus*) are grown and sold commercially worldwide.
 - One of the best examples of a wild fruit commercialized through plant breeding efforts on blackberry genotypes (breeding selections and cultivars)
- Fresh-market blackberries are rich in nutraceuticals and have unique flavors that appeal to consumers.
 - Aroma and flavor complexity impacted by basic tastes (sweetness, sourness, and bitterness) and volatile compounds

Fresh-market Blackberry Challenges

Fresh-market blackberries are primarily hand harvested to ensure fruit maintains quality from harvest to consumption.

- Handling fresh-market blackberries during and after harvest impacts quality and marketability.
- As value and demand grows for freshmarket blackberries, harvest labor shortages and costs impact potential industry expansion.

Blackberry Postharvest Disorders

- Fresh market blackberries are packaged in clamshells and have issues with postharvest disorders.
 - Decay
 - Leakage
 - Red drupelet reversion (RDR)
 - Weight loss

Soft Robotic Grippers

- Made from rubber, silicone, or other flexible and durable materials
- Driven by an actuation mechanism
- Introduced into the fruit harvest sector

Using Marketability Attributes for Initial Development of a Soft Robotic Gripper for Harvesting Fresh-market Blackberries

Objectives

Materials and Methods

Blackberry Harvest

- Blackberries harvested from a commercial growers in Arkansas into 170-g vented clamshells (20 berries/clamshell) in triplicate
- ◆ Four cultivars (Natchez, Osage, Prime-Ark[®] Traveler, and Sweet-Ark[™] Caddo) harvested at the shiny-black stage of ripeness
- Blackberries gently hand harvested to compare to berries harvested with a custommade force sensing apparatus and a soft robotic gripper prototype

Force-sensing Apparatus (Sensor)

- Blackberries harvested using a custom-made force sensing apparatus to measure forces applied to harvest in 2020
 - Apparatus designed with resistive force sensors placed on silicone finger covers positioned on the thumb and three fingers (index, middle, and ring) of the right hand
 - Voltage data measured by pairing each force sensor with a single power source non-inverting op-amp circuit, then voltage measurements sent through Bluetooth and converted to Newtons (N)
 - Data recording and processing conducted in a portable water-resistant case housed in a backpack

Soft Robotic Gripper Protype (Gripper)

Blackberries harvested using a 3-prong soft robotic gripper prototype in 2021

- Gripper designed with a three prong "finger" system made of silicone
- Internal structure of a "tendon" (36-guage guitar string) offset from the nitinol strip, resulting in inward bending during tendon retraction
- Custom-designed mechanism mounted beneath the prongs, providing a method for retracting the tendons
- Berries harvested at a fingertip contact force of 0.69 N
- Prototype manually placed in position to initiate grasping, harvest, and release of the berry into the clamshell

Blackberry Analysis

- Blackberries taken to UA System Food Science Department, Fayetteville, AR for analysis
- Physical, composition, and marketability attributes evaluated at harvest
 - Samples frozen (-10 °C) for composition analysis
- Marketability attributes evaluated after storage at 2 °C for 21 days

Physical Analysis

Weight (g)
Length (mm)
Width (mm)
Firmness (N)

Calipers

Texture analyzer

Balance

Composition Analysis

✤Soluble solids (%) ✤pH

Titratable acidity (% citric acid)

Refractometer

Automated titrator

pH meter

Marketability Analysis

Marketability attributes evaluated at harvest and after postharvest storage at 2 °C for 21 days on berries from each clamshell

- Decay (visible mold or rot) calculated as (number decayed berries/number total berries)*100
- Leakage (berries with juice visible) calculated as (number of leaky berries/number of total berries)*100
- RDR calculated as (number of berries with red drupelets/number of total berries)*100

Statistical Analysis

Data analyzed by analysis of variance (ANOVA) using JMP[®] (version 16.0; SAS Institute Inc., Cary, NC)

 Tukey's Honestly Significant Difference (HSD) or Student's T test used for mean separations (p = 0.05)
 Means with different letter(s) for each attribute within main effects significantly different

Physical and Composition Attributes at Harvest (2020 and 2021)

Year and Cultivar ^z	Berry weight (g)	Berry length (mm)	Berry width (mm)	Firmness (N)	Soluble solids (%)	рН	Titratable acidity (% citric)
2020							
Natchez	7.51	29.14	22.65	7.81	12.05	3.09	1.36
Osage	3.88	24.80	19.57	6.83	12.08	3.33	1.16
Prime-Ark [®] Traveler	4.29	21.42	20.70	6.56	12.42	3.33	1.02
Sweet-Ark [™] Caddo	8.31	30.14	22.53	9.22	12.10	3.25	1.13
2021							
Natchez	8.39	31.33	21.39	9.80	9.58	3.28	1.17
Osage	5.20	21.51	20.13	6.33	10.63	3.43	1.08
Prime-Ark [®] Traveler	4.43	19.16	18.87	6.71	11.03	3.24	0.99
Sweet-Ark™ Caddo	6.31	25.55	20.10	7.78	8.48	3.13	1.32

 Physical and composition attributes at harvest varied by cultivar
 4-8 g, 19-31 mm long, 19-23 mm wide, and 6-10 N firm
 8-12% soluble solids, 3.1-3.4 pH, and 1.0-1.4% titratable acidity

^zCultivars were evaluated in triplicate with 240 berries per cultivar and harvest method (total of 1,920 berries).

Force to Harvest

Cultivar impacted force to harvest blackberries using a force-sensing apparatus

❖ For the thumb and ring finger, Sweet-Ark[™] Caddo had the highest force (1.18 N and 0.15 N, respectively) as compared to the other cultivars

- * 'Natchez' had the highest force on the index (0.27 N) and middle finger (0.49 N)
- For the thumb, Prime-Ark[®] Traveler had the lowest (0.51 N) force
- Regardless of cultivar, the thumb applied the highest force (0.77 N), followed by the middle finger (0.37 N), index finger (0.16 N), and ring finger (0.06 N)

Cultivar ^z	Thumb	Index	Middle	Ring
Natchez	0.75 b	0.27 a	0.49 a	0.05 b
Osage	0.65 bc	0.09 b	0.31 b	0.03 bc
Prime-Ark [®] Traveler	0.51 c	0.10 b	0.37 ab	0.01 c
Sweet-Ark [™] Caddo	1.18 a	0.17 ab	0.31 b	0.15 a
P-value	<0.0001	<0.0001	0.0136	<0.0001
Average	0.77	0.16	0.37	0.06

²Cultivars were evaluated in triplicate with 240 berries per cultivar. Means with different letter(s) for each attribute are significantly different (p<0.05) using Tukey's Honestly Significant Difference test.

Marketability attributes at 21 d at 2° C

	Sensor 2020			Gripper 2021		
Effects ^z	Leakage (%)	Decay (%)	Red drupelet (%)	Leakage (%)	Decay (%)	Red drupelet (%)
Harvest Method ^y						
Hand	1.25 a	0.42 a	3.33 a	23.58 b	16.67 a	1.40 b
Sensor/gripper	6.25 a	0.42 a	5.00 a	37.96 a	17.93 a	8.74 a
P-value	0.0760	0.9999	0.3464	0.0071	0.7478	0.0012
Cultivar						
Natchez	5.00 a	0.00 a	6.67 a	40.07 a	10.95 b	6.15 ab
Osage	2.50 a	1.67 a	0.83 a	8.49 b	12.44 b	0.00 c
Prime-Ark [®] Traveler	6.67 a	0.00 a	3.33 a	38.19 a	31.82 a	11.63 a
Sweet-Ark TM Caddo	0.83 a	0.00 a	5.83 a	36.33 a	13.99 b	2.50 bc
P-value	0.4326	0.1546	0.1106	0.0005	0.0047	0.0027
Harvest method X Cultivar						
P-value	0.6243	0.9999	0.3787	0.3020	0.0231	0.0119

Marketability attributes at 21 d at 2° C (2020)

- Harvest method x cultivar interaction and the main effects were not significant for any marketability attributes
 - Harvest method and cultivar did not impact leakage (3.75%), decay (0.42%), or red drupelet reversion (4.17%).

Marketability attributes at 21 d at 2° C (2021)

- Harvest method x cultivar interaction was significant for decay and red drupelet reversion Leakage impacted by harvest method and cultivar Fruit harvested by gripper (37.96%) had higher leakage than hand (23.58%) harvested fruit Osage (8.49%) had less leakage than other cultivars RDR in Prime-Ark[®] Traveler was lower in fruit harvested by hand (1.91%) as compared to the gripper (21.35%) Decay in Osage higher in fruit harvested by had (21.62%)
 - as compared to the gripper (3.25%)

Marketability attributes at 21 d at 2° C (2021)

Determined harvest and postharvest parameters to develop a prototype of a soft robotic gripper for the harvest of freshmarket blackberries

First step to develop a soft robotic gripper for an autonomous harvester for fresh-market blackberries

Conclusions

Acknowledgments

- Threlfall Research Team
- Faculty and Staff Sta-N-Step Farm & Neal Family Farm

Research was funded by a Specialty Crop Block Grant from the Arkansas Department of Agriculture, United States Department of Agriculture (AM190100XXXXG157) and a University of Arkansas Chancellors grant.

Publications

- Myers, A., A. Gunderman, R. Threlfall*, and Y. Chen. 2022. Determining hand-harvest parameters and postharvest marketability impacts of fresh-market blackberries to develop a soft-robotic gripper for robotic harvesting. HortScience 57(5):592-594, https://doi.org/10.21273/HORTSCI16487-22
 - 2023 American Society for Horticultural Science Outstanding Fruit Publication Award
- Gunderman, A.L., J.A. Collins, A.L. Myers, R.T. Threlfall, and Y. Chen. 2022. Tendon-driven soft robotic gripper for blackberry harvesting. IEEE Robotics and Automation Letters, 7(2):2652-2658, <u>https://doi:10.1109/LRA.2022.3143891</u>
- Zhang, Xin, T. Thayananthan, A.L. McWhirt, R.T. Threlfall; W. Liu, Y. Huang, Y. Zhao, A.L. Gunderman. Y. Chen. 2024. In-field multi-ripeness blackberry detection for soft robotic harvesting". Smart Agricultural Technology (In review)

Next Steps

- Engineers from this project currently at Georgia Tech/Emory
- Pursuing other funding to continue the project
 - Harvesting module
 - Robot perception
 - Locomotion planning

Thanks and Questions?

University of Arkansas System