Integration of Chitosan Emulsion and Silicon To Extend the Shelf-Life of Blackberry Fruit

Dr. Muneer Rehman (Postdoc) Muhammad A. Shahid (PI)

Fruit Physiology Lab UF/IFAS Horticultural Sciences Department, North Florida Research and Education Center, Quincy FL 32351

Blackberry

- Family Rosaceae
- Deciduous crop that grows best in temperate climates.
- Several blackberry species are native to Florida.
- In Florida, blackberries typically ripen during May and June.
- Extremely perishable.
- Major production areas in the United States are the Pacific Northwest, Michigan, and Arkansas.

Health benefits of blackberries

• Blackberries are rich in

 \checkmark Antioxidants, that prove beneficial to prevent many types of cancer.

 \checkmark Vitamin C content, which improves skin health.

 \checkmark Vitamin K that promotes bone health.

 \checkmark Dietary fiber that reduces blood sugar levels.

Chitosan

- Non-toxic, eco-friendly, and biocompatible natural polymer.
- Maintain the quality and extend the shelf life of postharvest fruits and vegetables.
- Chitosan coating can help maintain fruit quality by preventing loss of
- ✓weight,
- ✓ firmness
- ✓vitamin C
- ✓ titratable acidity
- Reduce the incidence of decay, such as that caused by Botrytis cinerea

Silicon

- Potential bio-stimulant-enhance the yield and quality of plant products.
- Application through foliar, incorporation into the soil, or fertigation.
- Increase plant resistance against diseases, insect attacks, and unfavorable environmental conditions.
- Very little research has been done on the effect of Silicon on the postharvest quality.

Objective of the study

Pre-harvest spray application

- 1. Chitosan (0.25 %)
- 2. Silicon (150 ppm)
- 3. Chitosan (0.25 %) + Silicon (150 ppm)

Time of spray application = 24 h before harvest

on physio-chemical characteristics of blackberry cultivars Osage, stored at 1°C for 7, 14, and 21 days.

Material and Methods

• Plant Material

> The Blackberry cultivar Osage was selected for experimentation purposes.

• Site location

Blackberry farm was located in Havana Quincy, North Florida (30.6238° N, 84.4146° W).

• Spraying activity

Blackberry trees were sprayed with chitosan, Silicon, and a combination of both. Control trees were sprayed with just normal water.

• Harvesting

• Fruit was randomly harvested around the tree canopy on 7 July 2023.

Material and Methods...cont.

• Packaging and Storage

Fruit were packed in 12 oz, vented clamshells with the dimensions of 5.68 x 7.3 x 1.88, containing a single absorbance pad.

➢ Fifty fruit were packed in each clamshell.

Following the harvest, the fruit was transferred to cold storage (1°C for 7, 14, and 21 d) with RH (85-90 %).

Experimental layout

- Factor A:
- Main Treatments
- Control
- Chitosan (0.25 %)
- Silicon (150 ppm)
- Chitosan + Silicon
- Storage temperature = 1°C
- Two-factor factorial CRD design, 3 replications, 1 box per replication= $4 \times 3 = 12$
- Total of 12 boxes for 0-day analysis
- We analyzed 7, 14, and 21 days = 12x 3= 36
- So total no of boxes required = 48
- Each box will have 50 fruits and was considered the experimental unit.

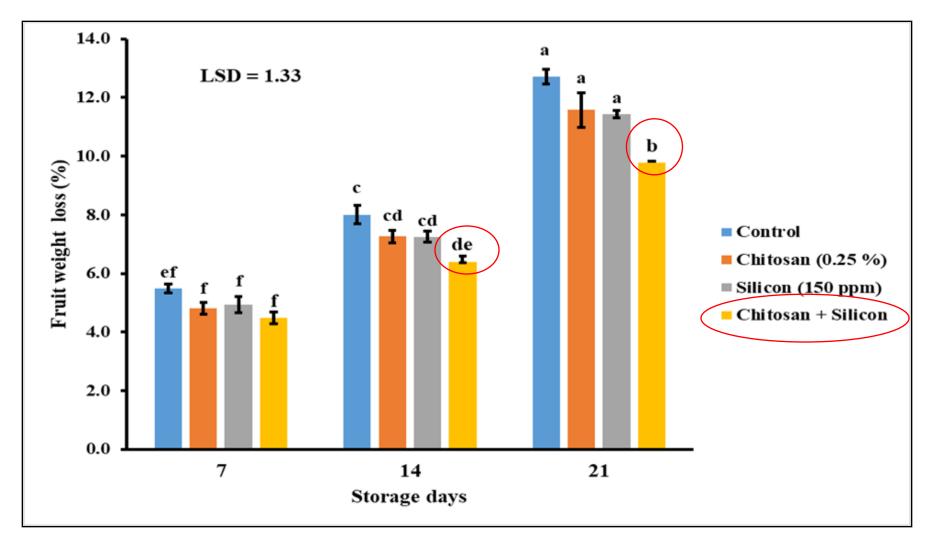
Storage duration

Factor B:

0, 7, 14 and 21 days

Assessments

- 1. Fruit weight
- 2. Fruit color (L*, a*, Hue angle and Total Color)
- 3. SSC %
- 4. TA %
- 5. Leakage (%)
- 6. Mycelium growth (%)
- 7. Red drupelet reversion RDR (%)
- 8. Market index (MI)



Fruit weight loss (%)

• Weight loss percentage = $(Initial weight-Final weight) \times 100$ (Initial weight)

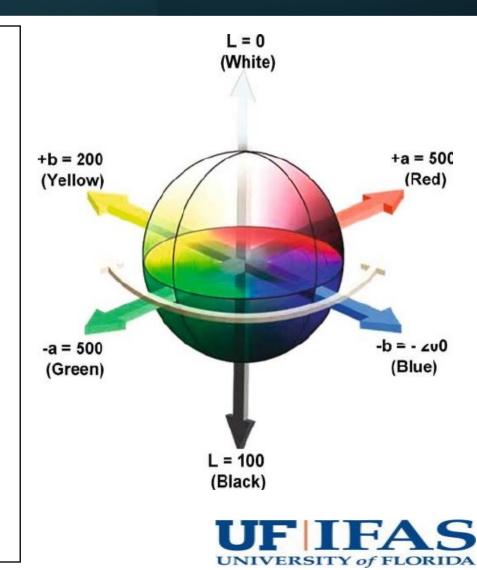
Fruit weight loss (%)

Fruit Color

13

KONICA MINOLTA

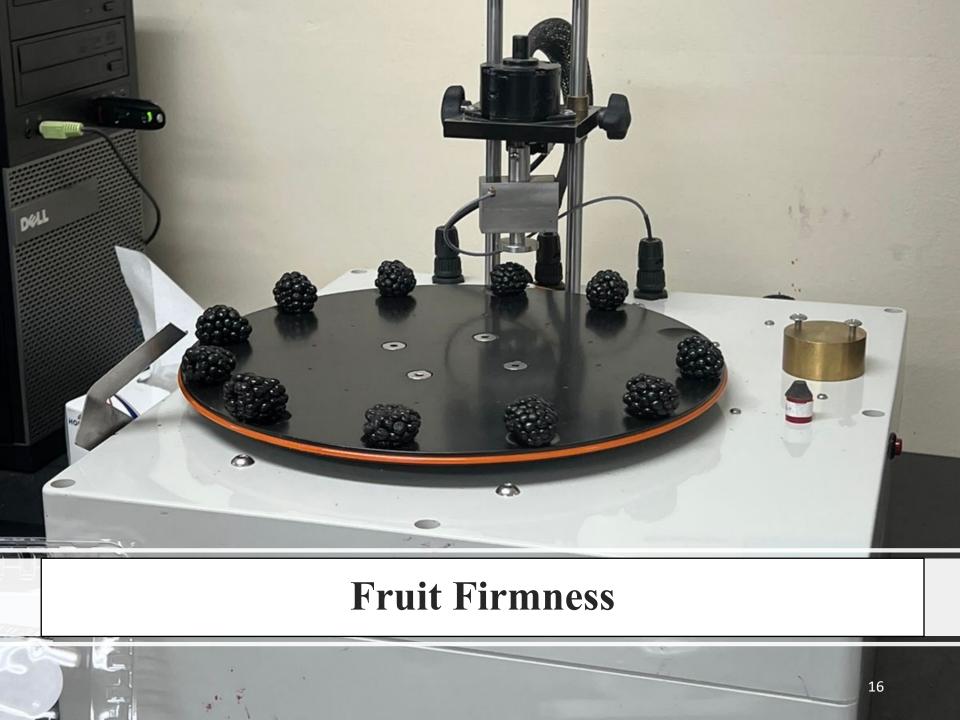
Color coordinate (Color scale)

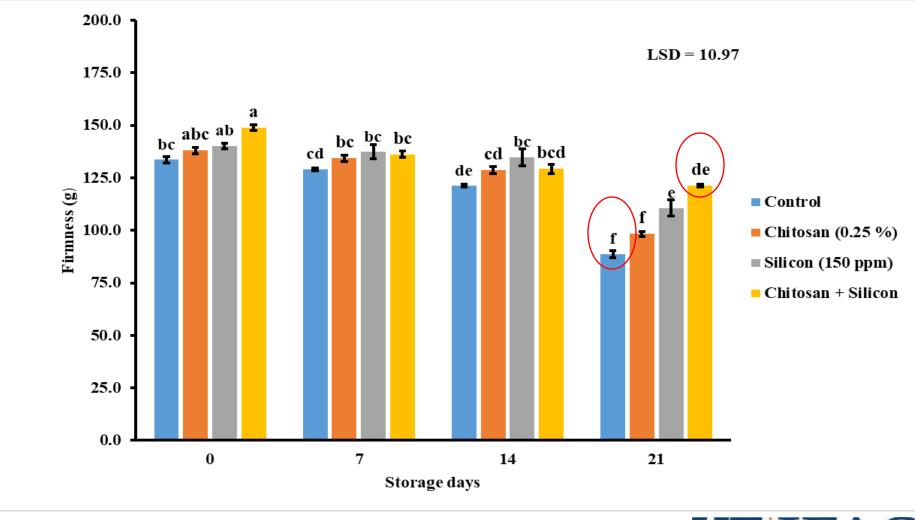

• L* represents the lightness (0 white to 100, dark black).

 a* specifies the redness (+a*) or greenness (-a*).

b* indicates the yellow (+b*) or blue (-b*) colour of fruit skin.

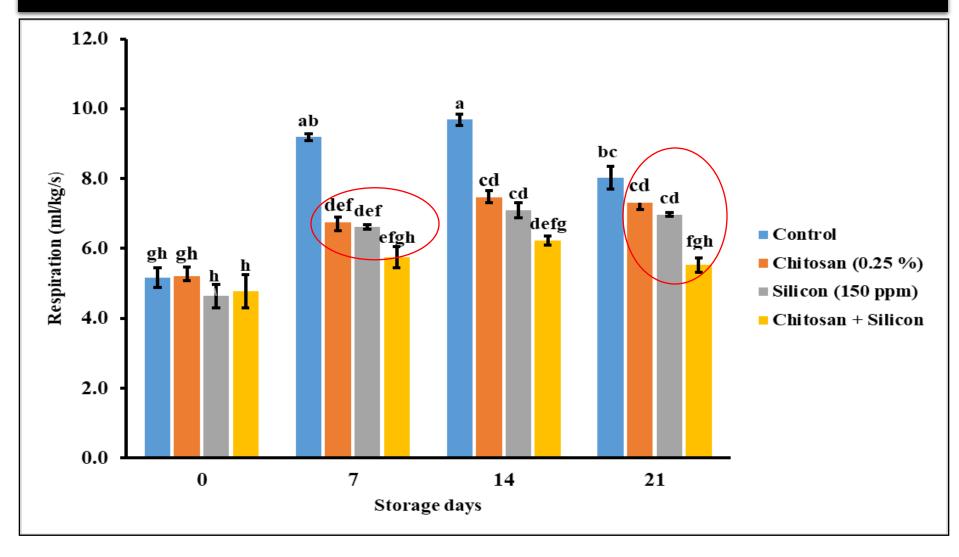
 Δb


$$TCD = \sqrt{\Delta L * + \Delta a * +}$$

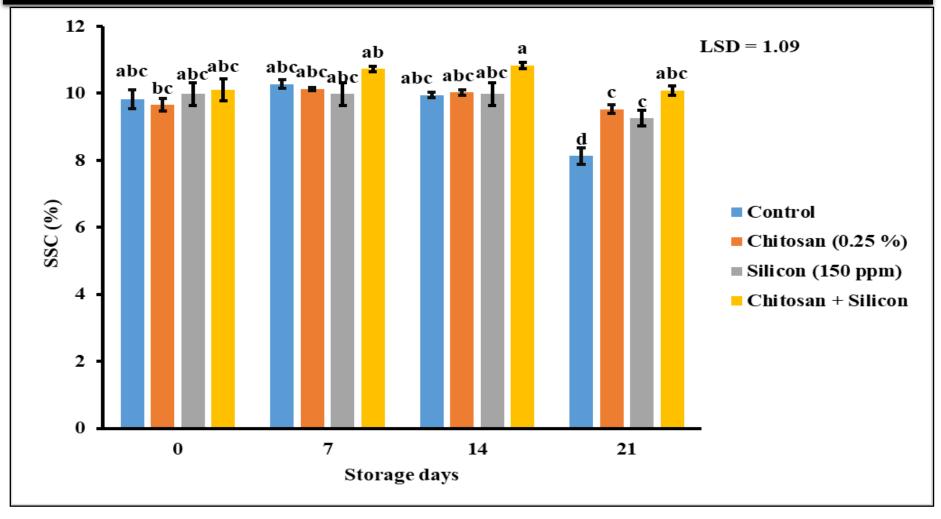

Total Color

Total Color						
		Storage days (SD)				
Treatments	0	7	14	21	Mean (T)	
(T) Control	4.30ab	4.27 а-с	4.13 d-f	4.09 f	4.20	
Chit (0.25%)	4.32 a	4.29 a-c	4.26 a-d	4.07 f	4.23	
Si (150 ppm)	4.26a-d	4.18 b-f	4.22 a-e	4.10 ef	4.19	
Chit + Si	4.31 ab	4.25 a-d	4.17 c-f	4.10 ef	4.21	
Mean (SD)	4.30 a	4.25 b	4.19 c	4.09 d		
LSD ($P \le 0.05$)	$\mathbf{T} = 0$.12	SD =0.04	TXS	D = 0.12	

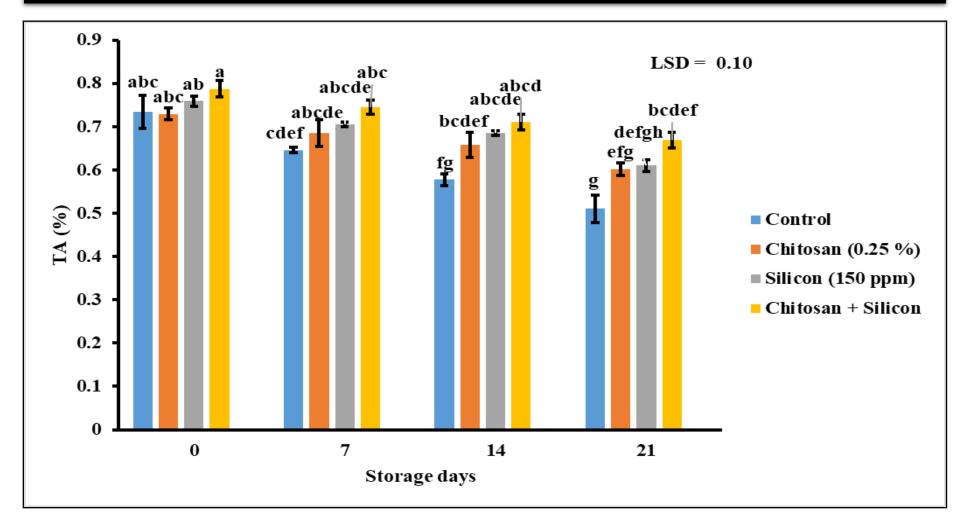
Fruit firmness



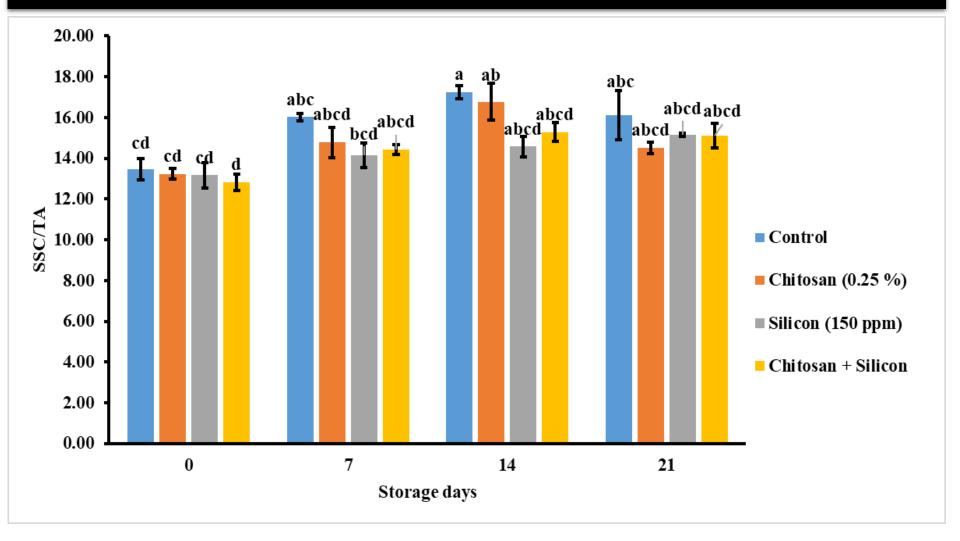
UF IFAS


Respiration rate

Respiration rate



Soluble solid content (SSC %)



Titratable acidity (TA %)

SSC/TA

Leakage (%)

- Leakiness can determine the postharvest storage shelf life of blackberries.
- Leakiness in blackberries can be caused by several factors.
- 1. Exposure to high temperatures
- 2. Compression
- 3. Bugs
- Ripe fruit impacted by heavy rains will be soft leaky, and un-marketable



Leakage (%)

Treatment (T)	7	14	21	Mean (T)
Control	10.50 d	23.50 c	49.0 a	27.66 a
Chi (0.25%)	2.50 ef	5.50 e	28.50 b	12.16 b
Si (150 ppm)	2.0 f	3.50ef	24.75 c	10.08 c
Chit + Si	3.0 ef	9.0 d	23.75 c	11.91 b
Mean (SD)	4.50 c	10.37 b	31.50 a	
LSD ($P \le 0.05$)	T =1.36	SD = 1.07	T x S	SD = 3.06

Mycelium growth

- ✓ Blackberries stored in cold storage showed signs of mycelium growth.
- ✓ Blackberries develop mold in storage due to
- 1. Moisture
- 2. Temperature fluctuation
- 3. Damaged berries
- 4. Spore contamination

Mycelium growth (%)

	Storage days (SD)			
Treatments (T)	7	14	21	Mean (C)
Control	4.0 d	8.0 c	12.0 a	8.0 a
Chit (0.25%)	1.0 e	1.0 e	10.25 ab	4.08 b
Si (150 ppm)	1.0 e	1.50 e	9.50 bc	4.00 b
Chit + Si	0.0 e	3.75 d	9.50 bc	4.41 b
Mean (SD)	1.50 c	3.56 b	10.31 a	
LSD ($P \le 0.05$)	T= 0.8 1	SD = 0.63	3 T x S	$\mathbf{D}=1.82$

Red Drupelet Reversion RDR (%)

Red Druplet Reversion (RDR)

- Physiological disorder that causes blackberries to turn red after harvest.
- It occurs when blackberries are damaged during harvest or shipping, such as by bruising or compression.
- Studies have shown that blackberries with temperatures over 72.5 degrees Fahrenheit before cooling are most likely to show reddening symptoms.

RDR (%)

Treatments (T)	7	14	21	Mean (C)
Control	8.0 d	10.0 cd	22.50 a	13.50 a
Chit (0.25%)	2.50 f	3.0 f	14.50 b	6.66 b
Si (150 ppm)	2.50 f	3.25 f	15.50 b	7.08 b
Chit + Si	2.50 f	5.50 e	11.75 c	6.58 b
Mean (SD)	3.87 c	5.43 b	16.06 a	
LSD ($P \le 0.05$)	T = 0.91	= 0.91 SD = 0.72 T x SD = 2.06		= 2.06

Market index (MI)

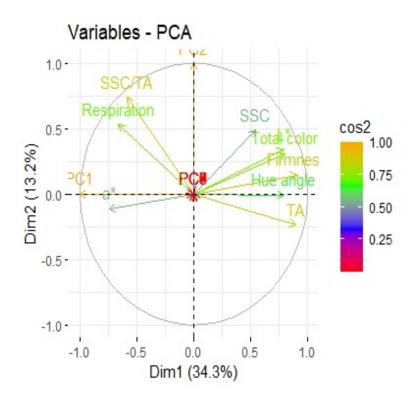
• The following formula estimated the marketability index (MI) of the blackberry. The lowest possible value of 85 percent was considered for a clamshell suitable for marketing (Clark and Perkins-Veazie, 2011).

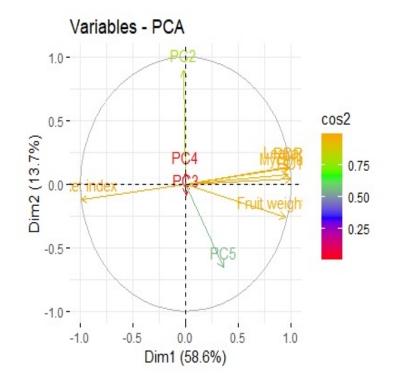

• MI (%) = 100- [(% RDR + % Leakage + % Mycelium)/3]

Market index (MI)

Treatment (T)	7	14	21	Mean (C)
Control	92.50 b	86.16 c	72.16 e	83.61 b
Chit (0.25%)	98.0 a	96.83 a	82.25 d	92.36 a
Si (150 ppm)	98.16 a	97.25 a	83.41 d	92.42 a
Chit + Si	98.16 a	93.91 b	85.00 c	92.36 a
Mean (SD)	96.70 a	93.54 b	80.70 c	
LSD ($P \le 0.05$)	T = 0.49	SD = 0.49	$T \times SD = 0.63$	

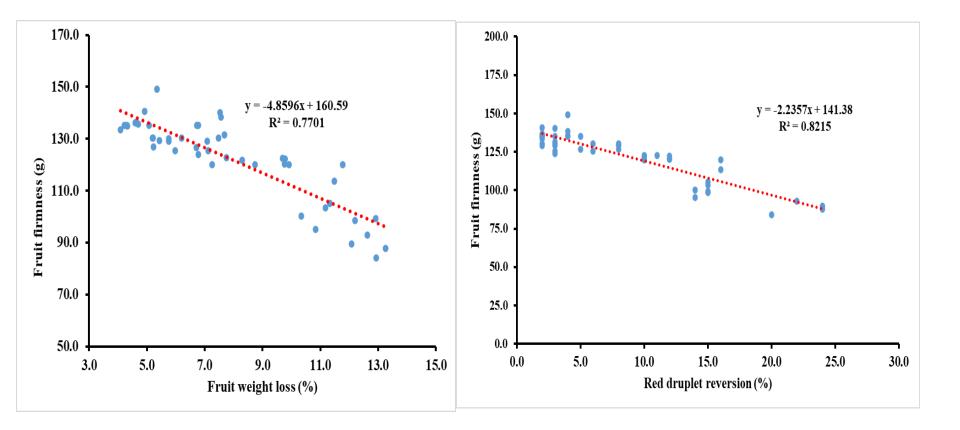
1977

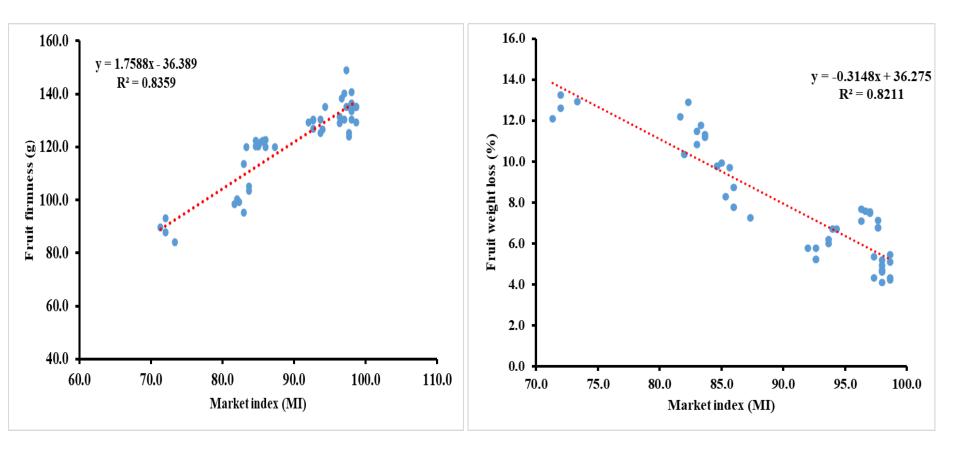

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Chitosan

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


Principal Component Analysis (Statistical software (R)



Correlation

Correlation

Conclusion

• Chitosan (0.25%), and silicon (150 ppm) both can improve the blackberry shelf-life by maintaining fruit physicochemical properties.

• Preharvest spray treatments were found suitable to extend the shelf-life by minimizing supplementary operations after harvesting the fruit.

• It is critical to mention that the integration of chitosan (0.25%) + Silicon (150 ppm) as preharvest spray treatments could be beneficial for blackberry production

Acknowledgment

- Muhammad Adnan Shahid- PI
- Fruit Physiology Lab members at NFREC Quincy
- Dr Angelos Post harvest lab at UGA Tifton
- Grower Bryan Baxley for providing fruit.

THANK YOU..!!

