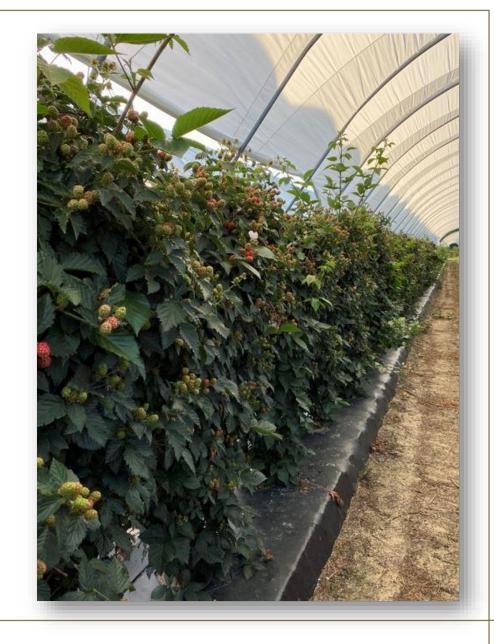
Longcane Production: Fertility Management

NARBA 2023

Soil to Substrate

- Traditional soil production is a buffered system that allows for mistakes
- Slow to change, whether good or bad
- Substrate production is more controlled and carries more risk
- Rapid changes in conditions
- Attention to detail is critical

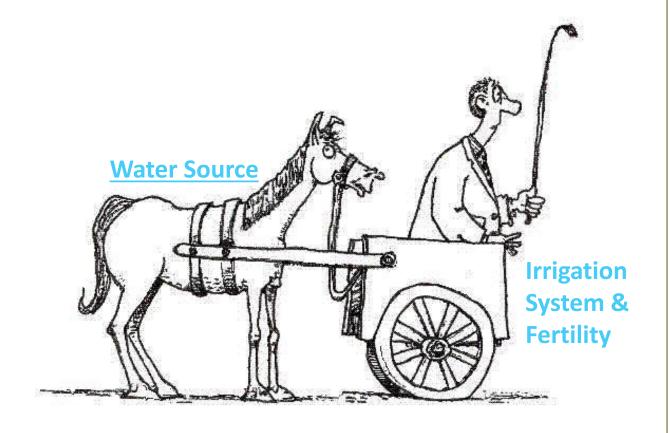


Soil System

- Must start with correct pH, but impact in season is minimal with good fertility program (nitrate nitrogen)
- High volume and low frequency irrigation/fertigation system
- Typically 150-30-200# NPK with 30# S and 40-50# Ca
- Potassium nitrate / calcium nitrate / UAN style blends (5-1-7 2% Ca)
- Sulfur supplied as supplement ATS/KTS
- Seeing more automation and controlled PPM focused fert

Substrate System

- Rapid pH manipulation possible through water treatment and fertilizer selection
- Low volume and high frequency system, typically 2-3 minute run times 20-30 times daily
- Fert is driven by PPM targets by crop stage,
 which are delivered in every irrigation cycle
- Potassium nitrate/calcium nitrate/potassium sulfate and sulfate based minors
- Calcium and sulfur delivered together, if water quality allows



Water Quality

- Knowing the quality and <u>consistency</u> of your water source is critical
- Well/municipal/surface
- Surface water is variable and typically low pH and higher EC
- pH management is very important (5.5 target in drip)
- Potassium Bicarbonate to increase pH & acids to decrease
- Iron often an issue (>0.5ppm)

Nuts and Bolts

- Substrate irrigation systems are low volume and high frequency
- Longcane typically will have
 14-20 run times per day @
 2-3 minutes per
- Constant pressure system needed for fert uniformity
- Run times are based on % moisture in substrate and drainage
- Typically 50% moisture and 15-20% drainage

Injection Systems

- Two stage injection system
- Calcium and Sulfur based to eliminate solids and uptake issues
- Fertilizer is diluted and/or rate is controlled by injection ratio (1:300 ex)
- Longcane systems can be running in Winter months, fert needs to stay above 50 F

Fertilizer Sources

- Water soluble blends are best option
- Liquid fertilizers are an option, with less customization but reduced labor
- Many options to find the same end goal, as long as product form/ratios are correct
- Nutrient form matters! Can have large impact on pH (especially nitrogen)

5-12-24 BERRY

TANK B MIX
WATER SOLUBLE FERTILIZER

NOTICE: This product is designed to be used in conjunction with 14-0-0 Tank A Mix in order to provide a complete nutritional program. If making a concentrated stock solution, these products should remain separate and not be combined.

GUARANTEED ANALYSIS

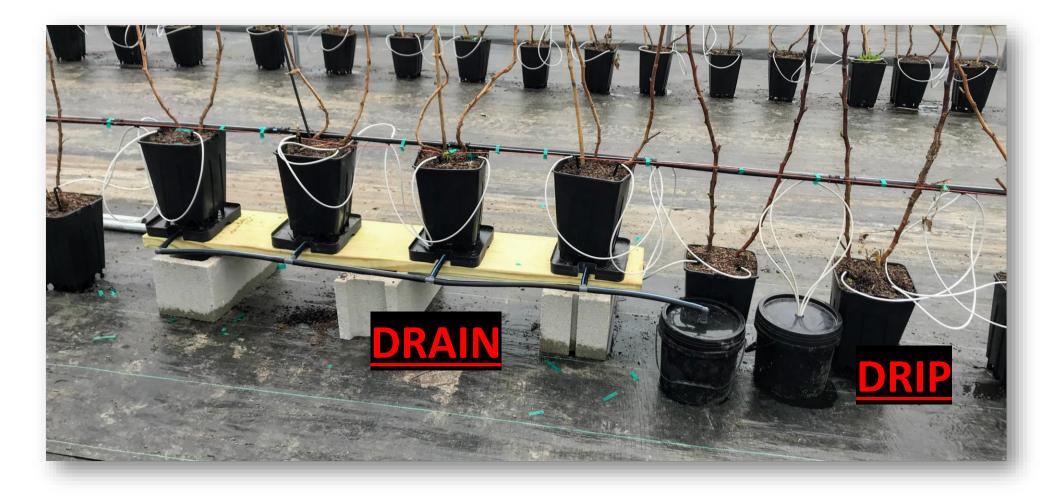
JOANNE CONTRACTOR	
Total Nitrogen (N)	5.00%
5.00% Nitrate Nitrogen	
Available Phosphate (P2O5)	12.00%
Soluble Potash (K_O). 2 5	24.00%
Magnesium (Mg).2	
Magnesium (MgO)	7 300%
Sulfur (S) (Combined)	5.000%
Boron (B)	
Copper (Cu)	0.020%
Manganèsé (Mn)	0.120%
0.12% Chelated Manganese	
Molybdenum (Mo)	
Zinc (Zn)	

Derived from: Potassium Nitrate, Magnesium Nitrate, Monopotassium Phosphate, Sodium Borate, Copper Sulfate, Magnesium Sulfate, Manganese EDTA, Sodium Molybdate, and Zinc Sulfate. Chelating agent is Ethylenediaminetetraacetic Acid (EDTA).

Example Program – Longcane Bramble

	NO ₃₋ N	NH ₄ - N	Р	К	Mg	Ca	S	Fe	Mn	Zn	В	Cu	Мо
Vegetative Targets	150-175	10-25	20-50	<mark>120-150</mark>	30-50	<mark>130-160</mark>	20-50	1-3	0.5-1.5	0.25-1	0.1-0.3	0.1-0.2	0.05
Fruiting Targets	130-140	<mark>5-10</mark>	20-50	200-250	30-50	100-120	20-50	1-3	0.5-1.5	0.25-1	0.1-0.3	0.1-0.2	0.05

рН	EC (mS)	Combined EC Max (mS)
5.5	<mark>1.6</mark>	<mark>3.5</mark>
5.5	1.3	3



Fert Program Management

SYSTEM MANAGEMENT – CRITICAL CONCEPT

MOISTURE 50%	рН	EC (mS)	Combined EC Max (mS)
Vegetative Targets	5.5	<mark>1.6</mark>	3.5
Fruiting Targets	5.5	1.3	3

EC too high, will get tip burn and root damage, too much salt

- Combined EC is Drip EC + Drain EC
- Push and pull relationship
- Drip target is 1.6, so if drain EC approaches 1.6 (combined 3.2) begin decreasing drip (TOO MUCH FERT)
- If drip isn't decreased, combined will exceed 3.5 and damage will happen

PROBLEMATIC SCENARIOS

- System is running to maintain 50% moisture in media and 1.6 EC in the drip
- Weather conditions consistent in temperature and sunshine
 - plants growing well
- 2-4 day weather event of cooler and overcast conditions
 - Plants SLOW DOWN
 - When plants slow down, take up less water and nutrients
 - System stays on same run times and EC, so moisture too high and too much salt
- Tip burn happens and salts get too high, have to flush the system with clean water and then dry back down to ideal moisture
- Rollercoaster scenario causes stress, yield loss and poor fruit quality
- MUST COMPENSATE FOR WEATHER CONDITIONS AND PLANT GROWTH

PROBLEMATIC SCENARIOS

- System is running to maintain 50% moisture in media and 1.6 EC in the drip
- Weather conditions consistent in temperature and sunshine
 - plants growing well
- 2-4 day weather event of very high temperatures
 - Plants SPEED UP
 - When plants speed up, take up more water and nutrients
 - System stays on same run times and EC, so moisture too low
- Moisture too low results in stress/wilting and a stressed plant stops taking up fertilizer, salts begin to accumulate
- Rollercoaster scenario causes stress, yield loss and poor fruit quality
- MUST COMPENSATE FOR WEATHER CONDITIONS AND PLANT GROWTH

MONITORING SYSTEM - SENSOR TECHNOLOGY

THANK YOU FOR YOUR TIME!

