
Irrigation and Soil Water Monitoring in Blackberry and Responder

David Bryla

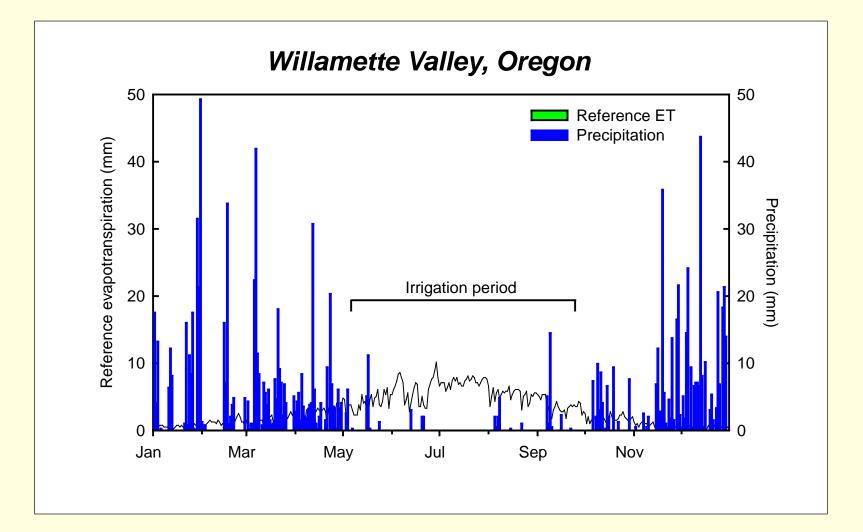
USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon

9700 acres raspberries

7900 acres blackberries 150<mark>0 acres raspberries</mark> 1100 acres black raspberries

Washington/Oregon Raspberry Production

- 2.5 x 10 ft. spacing
- Raised beds
- Arced canes
- Machine harvest


- 'Meeker' & 'Wake [™]Field' are the primary cultivars
- Surface/subsurface drip (WA) & sprinklers/guns (OR)
- Granular fertilizers/fertigation

Oregon Blackberry Production

- 5 x 10 ft. spacing
- Flat ground
- Two-wire trellis
- Every or alternate year production
- Machine harvest
- 'Marion', 'Black Diamond',
 'Columbia Star' are top cultivars
- Drip & sprinklers/guns
- Granular fertilizers/fertigation

Water requirements

Irrigation methods and considerations for water applications

- Estimating water requirements
 - Background
 - Tools
- System options and configurations
- Feasibility of using pulsed drip

Irrigation Requirements?

Soil moisture sensors

Weather-Based Irrigation Scheduling

$ET_c = ET_r \times K_c$

- ET_c = crop evapotranspiration (water use)
- > ET_r = reference evapotranspiration
 - □ From Ag weather station network
- > $K_c = crop coefficient$

Evaporation pan

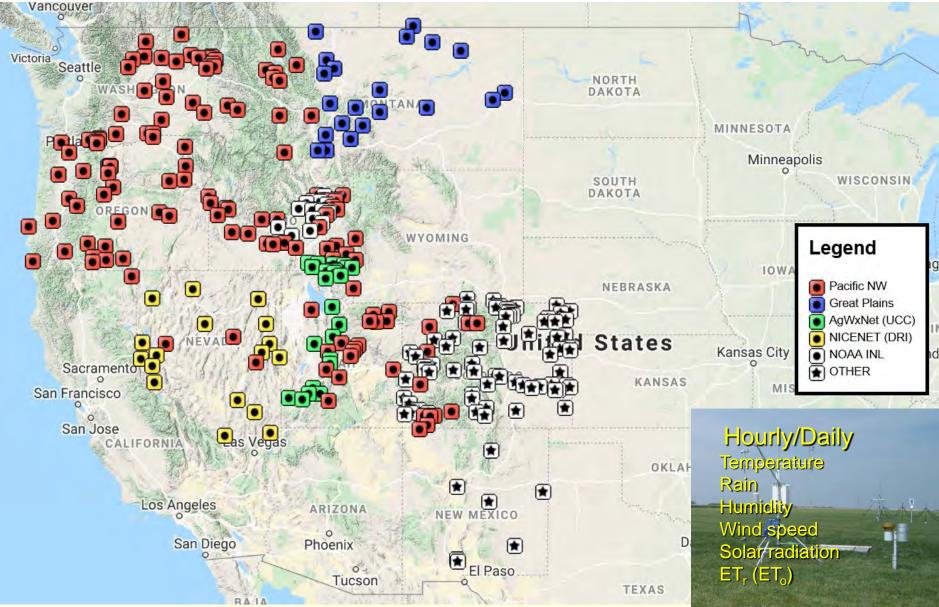
Weather station

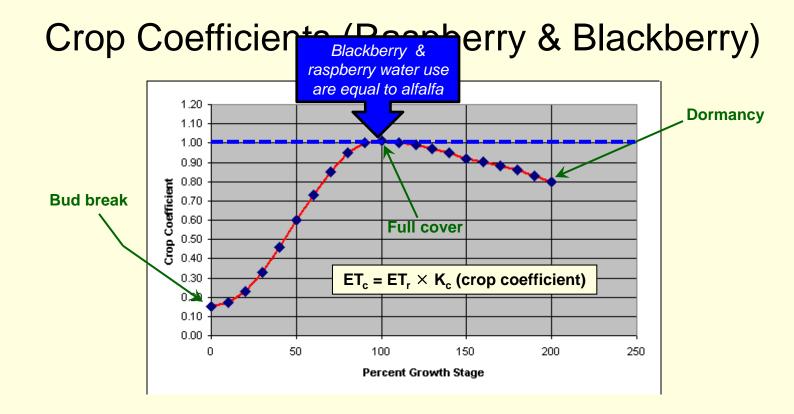
I PROPERTY AND

Hourly/Daily Temperature Rain Humidity Wind speed Solar radiation ET_r and/or ET_o

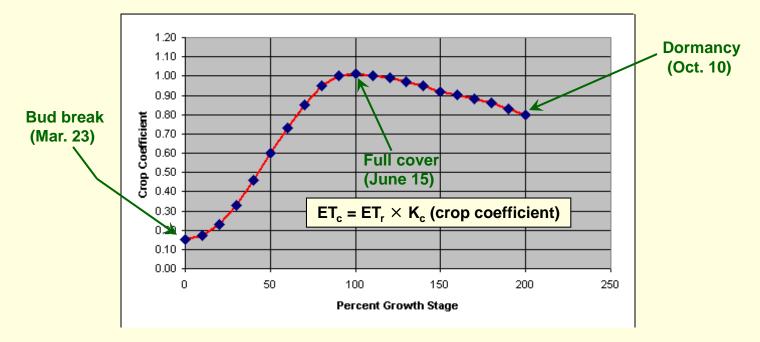
PN REGION

Home

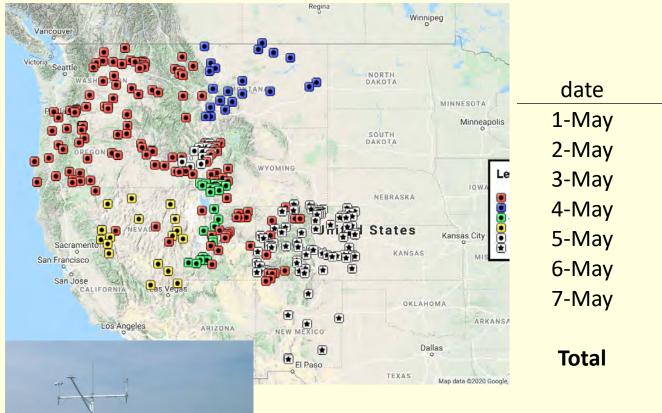

About Us


Employment

Columbia-Cascades


AgriMet Network Map

Hover over the dot for the name and identifier of the AgriMet weather station. Click on a dot for information specific to that AgriMet weather station.



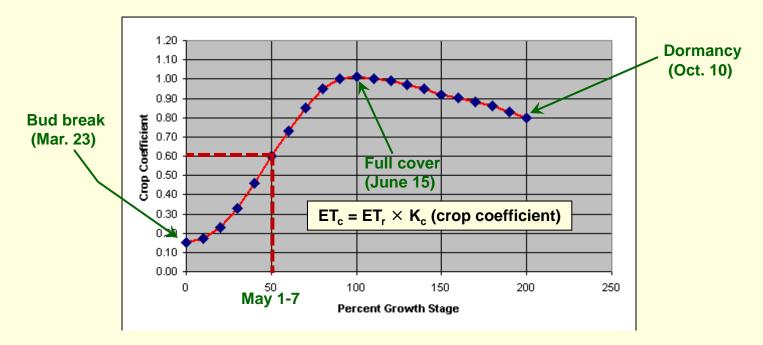
Irrigation requirements during week of May 1-7

Step 1. Obtain ET_r and rainfall from Ag Weather site (use nearest weather station)

	ET _r	Precipitation
date	(inches)	(inches)
1-May	0.27	0
2-May	0.32	0
3-May	0.47	0
4-May	0.43	0
5-May	0.08	0.37
6-May	0.17	0.14
7-May	0.26	0
Total	2.01	0.51

Irrigation requirements during week of May 1-7

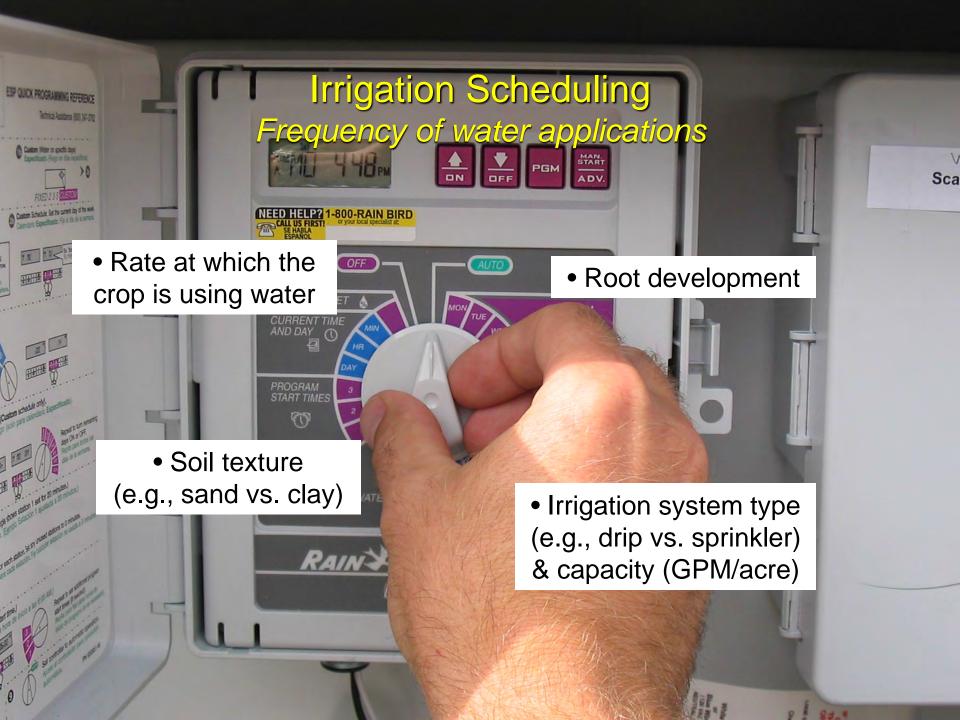
Step 1. Obtain ET_r and rainfall from Ag Weather site (use nearest weather station)

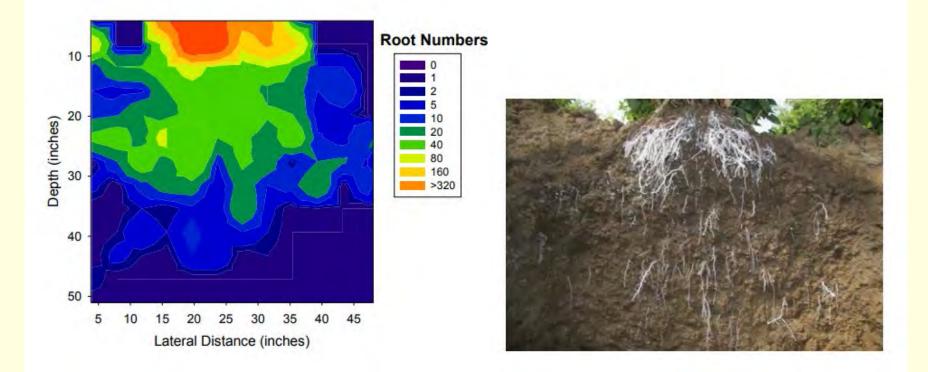

ET_r = 2.0 inches **Precipitation = 0.5 inches**

Step 2. Find K_c for raspberry

$$K_{c} = 0.6$$

Step 3. Calculate ET_c


 $ET_c = ET_r \times K_c = 2.0$ inches $\times 0.6 = 1.2$ inches


Irrigation requirements during week of May 1-7

Step 4. Determine irrigation requirements

Irrigation requirements = ET_c – Precip. = 1.2 – 0.5 = <u>0.7 inches/week</u>

Distribution of Raspberry & Blackberry Roots

First year – 24" deep, 40" wide (33% of a 10-ft wide row) Second year – 30" deep, 50" wide (42% of the row)

Cahn et al. (2008)

Soil texture

Soil		Available moisture per foot soil	
General description	Texture class	(inches)	
	Coarse sand	0.7	
Light, sandy	Fine sand	0.9	
	Sandy loam	1.2	
	Fine sandy loam	1.5	
Medium, loamy	Loam	1.8	
	Silt Ioam	2.0	
	Clay loam	2.2	
Heavy clay	Clays; peats/mucks	2.4	

*Values are for deep, uniform soil profiles. Layering or changes in soil texture within the profile may increase or decrease effective available water.

Management allowable depletion (MAD) = 20-30% prior to harvest & 50% after harvest

E.g., fine sandy loam = 0.3-0.45 inches of water per foot of soil prior to harvest & 0.75 inches after harvest

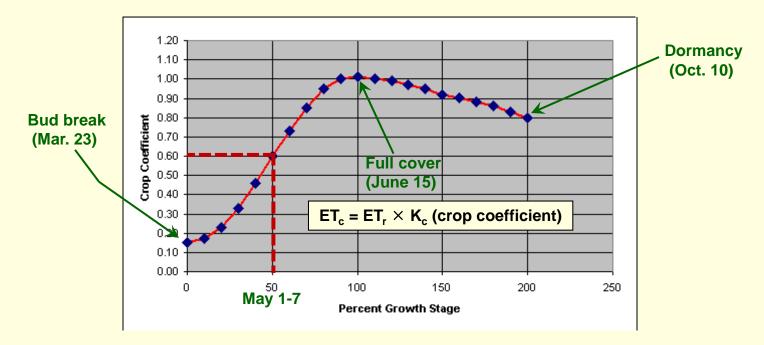
Determining irrigation frequency

How much water loss (ET_c) can the plants tolerate between each irrigation?

Effective rooting depth (m)

X soil water holding capacity (available inches per foot of soil)

X fraction of soil volume wetted (proportion of soil in the field)


X management allowable depletion (proportion of soil water)

= maximum ET_c between irrigations

Example: Fine sandy loam soil with mature raspberry plants

2.5 ft. rooting depth X 1.5 in. of H_2O per ft. X 0.4 (10 ft. row spacing) X 0.25 (i.e., 25% MAD) =

≈0.375 inches per irrigation

Irrigation requirements during week of May 1-7

Step 4. Determine irrigation requirements

Irrigation requirements = ET_c – Precip. = 1.2 – 0.5 = <u>0.7 inches/week</u>

Step 5. Determine irrigation frequency

```
≈0.375 inches per irrigation
```


Mobile App Irrigation Scheduler

			edule Idget 1	r mob	lle
1-00		Id: North	1	able	
		No. of Concession, Name	elp		
Date	Use	a second second	Avail. Water (%)		Edit Data
06/13	0.26	0	86.4	0.5	Edit
06/14	0.19	0	81.4	0.69	Edit
06/15	0.21	0	76.1	0.9	Edit
0.6/16	0.23	0	70.3	1.13	Edit
06/17	0.17	0	66.3	1.3	Edit
06/18	0.14	0	63	1.44	Edit
06/19	0.21	0	58.1	1.65	Edit
<u> << -</u>	>>>			>>>	>>
2	_	5	4		8

Download from AgWeatherNet http://weather.wsu.edi/is/

Developed by Dr. Troy Peters (WSU)

What's the Best Way to Irrigate Raspberries?

How much water is needed and how is it best applied?

Sprinklers?

Aurora, Oregon

Two irrigation studies were planted

STUDY 1

Cultivars

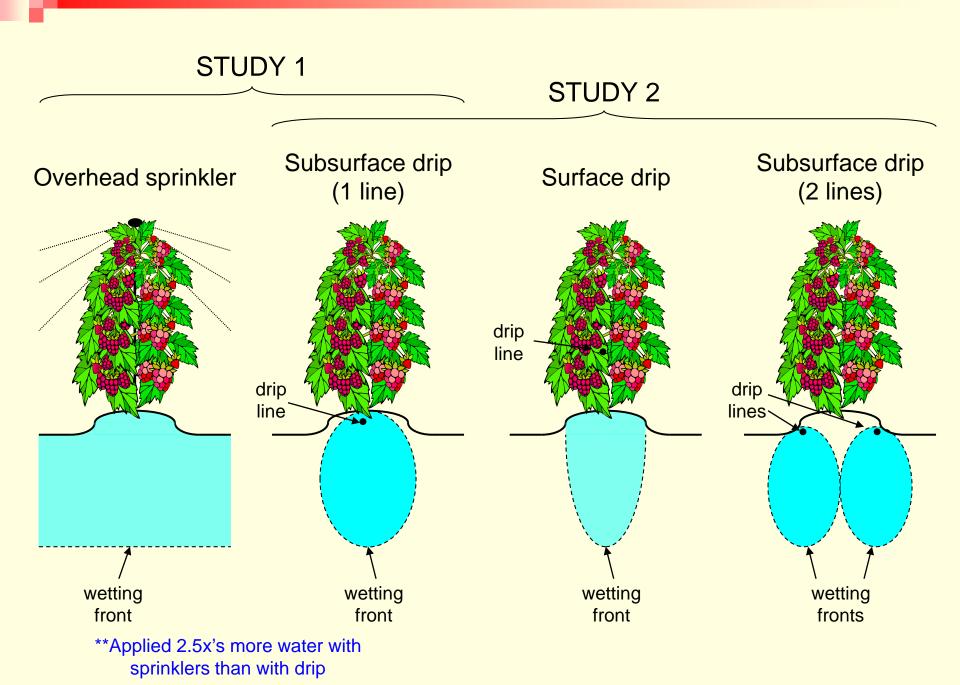
- Coho
- Meeker

Irrigation methods

- Sprinklers
- Drip

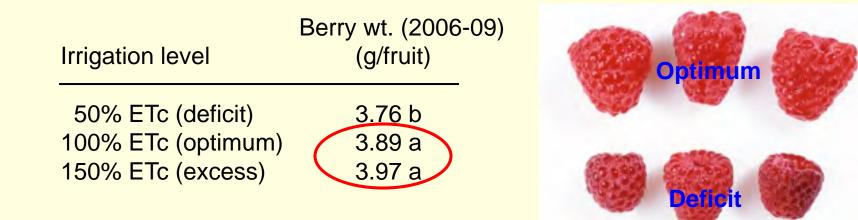
Irrigation levels (% of crop ET)

- 50% (deficit)
- 100% (optimum)
- 150% (excess)


<u>STUDY 2</u>

Cultivars

- Cascade Delight
- Cowichan
- Meeker
- Tulameen
- Caroline
- Fall fruiters
- Drip configurations


Heritage

- Surface drip
- Subsurface drip (1 line)
- Subsurface drip (2 lines)

Study 1 was machine-harvested *2006 was "baby crop" & 2007 was first year of full production

Berry wt. in 2006-09 (g/fruit)

Cultivar*	Sprinkler	Subsurface drip	%Difference
Coho	3.98 b	4.24 a	7%
Meeker	3.66 c	3.62 c	-1%
%Difference	9%	17%	

Yield in 2007 (ton/acre)

Irrigation level	Sprinkler	Subsurface drip	%Difference
50% ETc (deficit)	5.3 b	5.3 b	0%
100% ETc (optimum)	5.2 b	6.1 a	18%
150% ETc (excess)	5.2 b	5.8 a	12%

		Irrigation		Yie	ld (ton/acr	e)		
Cultivar	Irrigation system	level (%ET _c)	2006*	2007	2008	2009	Total	
Coho	Sprinkler	50	2.5 a	5.4 b-e	2.0 b	1.8 d	11.7 ef	
Coho	Sprinkler	100	2.4 a	5.2 c-e	2.0 b	1.5 d	11.1 f	
Coho	Sprinkler	150	2.4 a	5.4 b-e	2.3 b	2.1 cd	12.2 e	
Coho	SDI	50	2.4 a	5.7 a-c	2.1 b	2.3 cd	12.5 e	
Coho	SDI	100	2.6 a	6.3 a	2.3 b	2.6 c	13.8 d	
Coho	SDI	150	2.4 a	6.0 ab	2.4 b	2.7 c	13.5 d	
Meeker	Sprinkler	50	2.4 a	5.2 c-e	3.7 a	4.8 b	16.1 bc	
Meeker	Sprinkler	100	2.4 a	5.2 c-e	3.7 a	4.5 b	15.8 c	
Meeker	Sprinkler	150	2.2 a	5.0 de	3.8 a	5.0 ab	15.7 c	
Meeker	SDI	50	2.3 a	4.9 e	3.5 a	4.8 b	15.5 c	\
Meeker	SDI	100	2.7 a	5.9 ab	4.0 a	5.7 a	17.4 a	
Meeker	SDI	150	2.3 a	5.6 b-d	3.7 a	5.2 ab	16.8 ab	

*"Baby crop" year

'Coho' was severely affected by root rot beginning in 2008 (year 3)

Root rot was most prevalent in the lower areas where water tended to pool

Root rot was also greater with sprinklers & under-irrigation

Irrigation	Coho		Meeker	
level (%ET _c)	Sprinkler	SDI	Sprinkler	SDI
50 100 150	3.6 de 2.9 e 4.2 bc	3.9 cd 4.0 b-d 4.5 ab	4.9 a 4.8 a 5.0 a	4.9 a 5.0 a 5.0 a

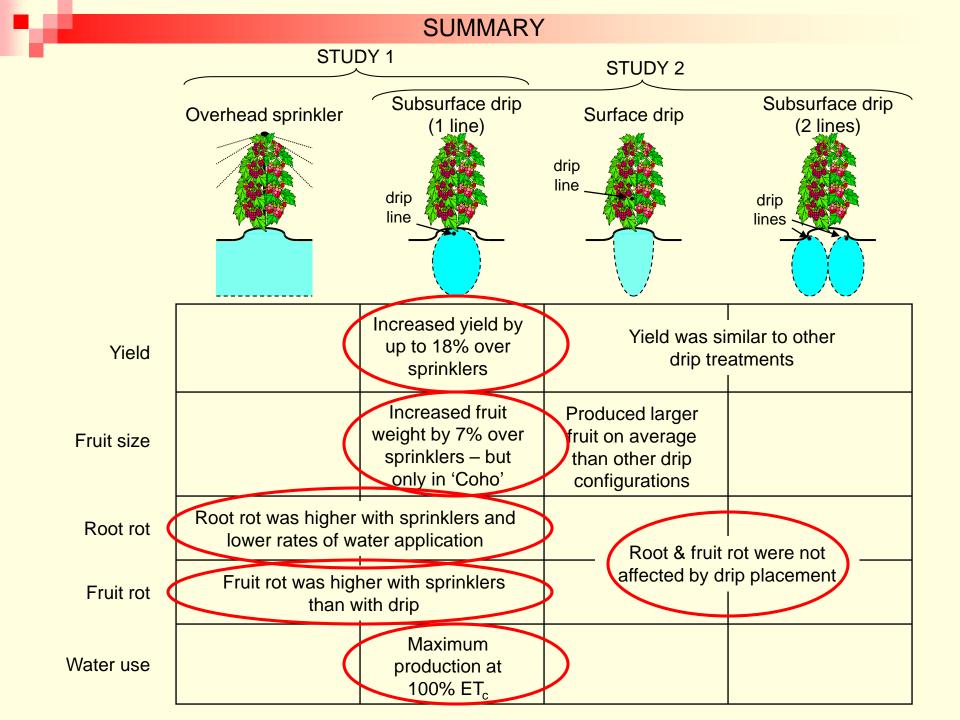
Ratings:

- 1 = >50% of the plants collapsed
- 2 = some plant death but <50% of the plants collapsed
- 3 = at least half the plants were severely stunted & yellowing
- 4 = mild stunting and yellowing

5 = completely healthy

**Applied the same amount of water with each method

	Yield (to	Yield (ton/acre)		
Cultivar	2007	2008		
Cascade Delight Cowichan Meeker Tulameen	6.6 a 5.6 c 5.8 bc 6.3 ab	5.7 a 5.4 a 5.2 ab 4.7 b		



	Yield (ton/acre)	
Drip configuration	2007	2008
Surface drip from trellis wire Subsurface drip (1 line) Subsurface drip (2 lines)	6.1 a 6.3 a 5.8 a	5.4 a 5.1 a 5.3 a
	No difference	

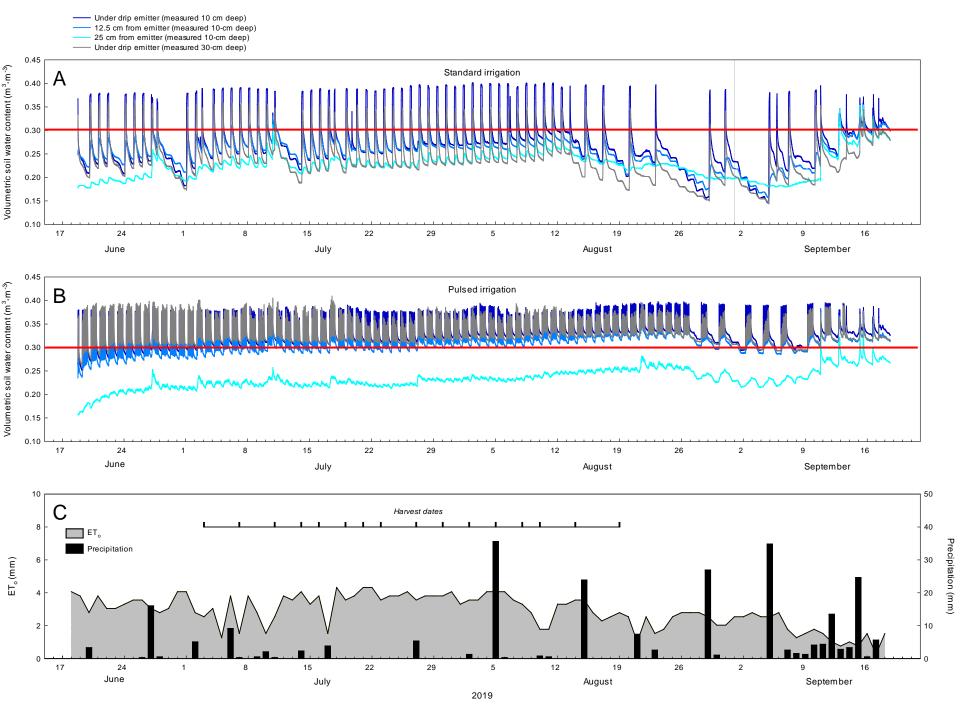
	Berry wt	Berry wt. (g/fruit)		
Cultivar	2007	2008		
Cascade Delight Cowichan Meeker Tulameen	5.48 a 4.07 c 3.56 d 4.68 b	5.37 a 4.14 b 3.65 c 4.19 b		

	Berry wt.	Berry wt. (g/fruit)	
Drip configuration	2007	2008	
Surface drip from trellis wire Subsurface drip (1 line) Subsurface drip (2 lines)	4.58 a 4.36 b 4.40 b	4.12 a 4.10 a 4.03 a	

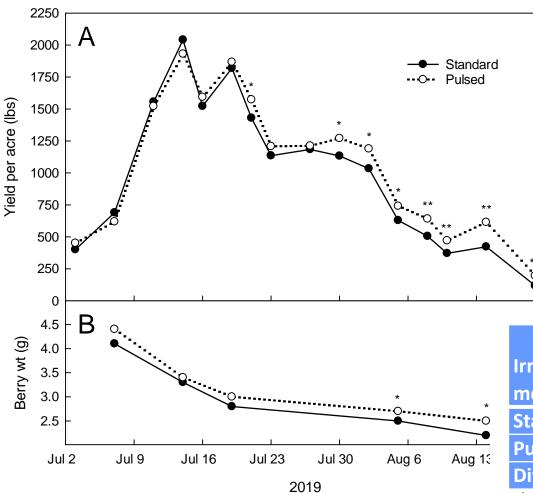
Conclusions

Drip is better than sprinklers (even in heavy soil)

- Much lower water requirements
- Higher yield
- Larger berries
- Less fruit & root rot


Placement of the drip lines is flexible

Feasibility of Pulsed Drip Irrigation


Grower site
 'Wake [™]Field'
 Light sandy so

Treatments

- •<u>Conventional</u>: irrigated once a day for up to 6 hours
- <u>Pulsed</u>: 30 min every 2 hours (total run time of up to 6 hours in a day)

Benefits of Pulsed Drip

	Total yield	Average
Irrigation	per acre	berry
method ^z	(lbs)	weight (g)
Standard	16,000	3.09
Pulsed	17,100	3.19
Difference	1,100+	0.10 ⁺
⁺ <i>P</i> < 0.10.		

	cidity	Sugar:acid
ds (%)	(%)	ratio
0.6	2.17	4.87
0.2	2.24	4.56
).4** -	-0.07*	0.31**
().2	0.2 2.24

^{*,**}*P* < 0.05 and 0.01, respectively.

Benefits of Pulsed Drip

Drone

Irrigation	Canopy cover (%)	
method ^z	Aug. 2019	Sept. 2019
Standard	56.1	48.9
Pulsed	60.0	58.4
Difference	3.9*	6.5**

^{*,**}*P* < 0.05 and 0.01, respectively.

Acknowledgements

- Collaborators: Bernadine Strik, Diane Kaufman, Chris Benedict, and Lisa DeVetter
- Technical Support: Jim Gartung, Amber Shireman, Ruth Hamlyn, Scott Orr, Jesse Carroll, OSU students
- Funding: Oregon Raspberry & Blackberry Commission, Northwest Center for Small Fruit Research, WSDA Specialty Crop Block Grant
- In-kind Support: Enfield Farms, Settler Supply Company, Wilbur-Ellis Fertilizer